Hemin-coupled iron(III)-hydroxide nanoparticles show increased uptake in Caco-2 cells.

نویسندگان

  • Markus Richard Jahn
  • Ibrahim Shukoor
  • Wolfgang Tremel
  • Uwe Wolfrum
  • Ute Kolb
  • Thomas Nawroth
  • Peter Langguth
چکیده

OBJECTIVES The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and ferrous iron but not ferric iron is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. In iron(III)-hydroxide nanoparticles hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by a solubilising carbohydrate shell, yet bioavailability from such particles is insufficient when compared with ferrous salts. To increase their intestinal uptake iron(III)-hydroxide nanoparticles were coupled in this study with the protoporphyrin hemin, which undergoes carrier-mediated uptake in the intestine. METHODS Uptake of iron(III)-hydroxide nanoparticles with hemin covalently coupled by DCC reaction was measured in Caco-2 cells with a colorimetric assay and visualized by transmission electron microscopy. KEY FINDINGS Nanoparticles were taken up by carrier-mediated transport, since uptake was temperature-dependent and increased with an increasing hemin substitution grade. Furthermore, uptake decreased with an increasing concentration of free hemin, due to competition for carrier-mediated uptake. CONCLUSIONS Hemin-coupled iron(III)-hydroxide nanoparticles were carried by a heme specific transport system, probably via receptor mediated endocytosis. It can be expected that this system shows improved absorption of iron compared with uncoupled iron(III)-hydroxide nanoparticles, which exist on the market today.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caco-2 Cell Acquisition of Dietary Iron(III) Invokes a Nanoparticulate Endocytic Pathway

Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hyd...

متن کامل

Mechanisms of Iron Uptake from Ferric Phosphate Nanoparticles in Human Intestinal Caco-2 Cells

Food fortification programs to reduce iron deficiency anemia require bioavailable forms of iron that do not cause adverse organoleptic effects. Rodent studies show that nano-sized ferric phosphate (NP-FePO4) is as bioavailable as ferrous sulfate, but there is controversy over the mechanism of absorption. We undertook in vitro studies to examine this using a Caco-2 cell model and simulated gastr...

متن کامل

Heme transport exhibits polarity in Caco-2 cells: evidence for an active and membrane protein-mediated process.

Heme prosthetic groups are vital for all living organisms, but they can also promote cellular injury by generating reactive oxygen species. Therefore, intestinal heme absorption and distribution should be carefully regulated. Although a human intestine brush-border heme receptor/transporter has been suggested, the mechanism by which heme crosses the apical membrane is unknown. After it enters t...

متن کامل

Tumor cell heme uptake induces ferritin synthesis resulting in altered oxidant sensitivity: possible role in chemotherapy efficacy.

Neovascularization and hemorrhage are common features of malignant tumors. We wondered whether hemoglobin derived from extravasated RBC deposits heme-derived iron into the tumor, which could modulate the sensitivity of cancer cells to oxidant-mediated injury. A brief exposure (1 h) of 51Cr-radiolabeled breast cancer cells (BT-20) but not colon cancer cells (Caco-2) to hemin (10 microM) or FeSO4...

متن کامل

In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model

The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacy and pharmacology

دوره 63 12  شماره 

صفحات  -

تاریخ انتشار 2011